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Abstract We examine the relationship between interannual variability of potential intensity (PI) and
tropical cyclone (TC) actual intensity (AI) and the factors contributing to this variability across all global
ocean basins. Using best-track data and three reanalysis products from 1980–2016, we find that the
Western North Pacific is the only basin that yields consistently significant correlations between AI and PI
sampled along the TC tracks. In contrast to a previous study, the North Atlantic does not yield statistically
significant correlations. This is because the correlation between AI and PI in the North Atlantic is sensitive
to the length of the time period considered and the individual years within that time period. Both
thermodynamic efficiency and air-sea disequilibrium contribute to interannual variability in
along-track PI.

1. Introduction
Potential intensity (PI) is the maximum possible intensity a tropical cyclone (TC) can achieve at steady state
in a given thermodynamic environment (Bister & Emanuel, 1998; Emanuel, 1986). Even though most TCs
do not reach their PI due to landfall, vertical wind shear, dry air entrainment (Tang & Emanuel, 2010),
ocean coupling (Emanuel, 2015; Huang et al., 2015; Lin et al., 2013), and other factors not accounted for
in PI theory, observations and model simulations show a strong link between PI and actual TC intensity
(Emanuel, 2000; Gilford et al., 2019; Kossin & Camargo, 2009; Strazzo et al., 2015; Wang et al., 2014; Wing
et al., 2007). Therefore, it is useful to view variability and change in actual TC intensity through the lens
of PI variability (Sobel et al., 2016). Climate models from the Coupled Model Intercomparison Projects
(CMIP3 and CMIP5) and physical arguments agree that PI should increase with future global warming, with
the largest PI increases over the tropical Atlantic and Pacific (Camargo, 2013; Emanuel & Sobel, 2013; Yu
et al., 2010). Thus, understanding variability in PI on a variety of time scales, and the factors that contribute
to it, is of great importance. Recent studies have investigated the relative contribution of sea surface temper-
ature (SST) and upper tropospheric temperature to changes in PI in idealized models (Ramsay, 2013; Wang
et al., 2014) and on decadal (Camargo et al., 2013; Emanuel et al., 2013; Kossin, 2015; Polvani et al., 2016;
Vecchi & Soden, 2007; Vecchi et al., 2013; Wing et al., 2015), interannual (Wing et al., 2015), and seasonal
time scales (Gilford et al., 2017, 2019). While many studies have examined decadal PI trends (Emanuel
et al., 2013; Free et al., 2004; Kossin, 2015; Wing et al., 2015), only a few have examined PI interan-
nual variability (Kossin & Camargo, 2009; Wing et al., 2007). Additionally, most studies have examined
basin-averaged PI (Emanuel et al., 2013; Gilford et al., 2017; Wing et al., 2015). However, in order to con-
duct a true test of PI theory, potential and actual intensity (AI) should be compared along actual TC tracks
(Emanuel, 2000; Gilford et al., 2019; Wing et al., 2007).

The objective of this study is to analyze the relationship between the interannual variability of potential
and actual TC intensity sampled along-track and the factors contributing to that variability. We extend
the analysis of Wing et al. (2007) by using multiple modern reanalysis products and examining all global
TC basins, and we improve on the analysis of Wing et al. (2015) by considering along-track rather than
basin-averaged PI.

2. Data
Observed TC track and intensity data are derived from NOAA's National Hurricane Center (NHC) for the
North Atlantic and Eastern North Pacific basins and the U.S. Department of Defense Joint Typhoon Warning
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Center for all other basins, as compiled by the International Best Track Archive for Climate Stewardship
(IBTrACS; Knapp, Kruk, et al., 2010) from 1980–2016. Observed intensities are recorded with a precision
of five knots, so the lifetime maximum intensity (LMI) is often located at more than one point along the
TC track. In this study, the very first point at which the LMI occurs along the track is used, following Wing
et al. (2007), referred to here as “actual intensity” (AI). All points except landfall points are retained; if points
poleward of 30◦ latitude are excluded, the results are qualitatively similar (Text S5 and Figures S12–S19 in
the supporting information).

Several reanalysis data sets are used to calculate PI, including the European Centre for Medium-Range
Weather Forecasts Interim Reanalysis (ERA-Interim; Dee et al., 2011) and the second Modern-Era Retro-
spective Analysis for Research and Applications (MERRA-2; Gelaro et al., 2017). Since the calculation of
PI may be sensitive to the choice of SST data, calculations were also performed with atmospheric variables
from MERRA-2, but with SSTs substituted from the UK Met Office Hadley Centre for Climate Prediction
and Research sea ice and sea surface temperature (HadISST1) data set (Rayner et al., 2003)—this version
of PI is referred to as “MERRA-2 HadISST” (see Gilford, 2018). Additional sensitivity tests were also con-
ducted using the National Centers for Environmental Prediction/National Center for Atmospheric Research
(NCEP/NCAR; Kalnay et al., 1996) and the ECMWF Atmospheric Reanalysis of the 20th Century (ERA-20C;
Stickler et al., 2014) reanalyses.

3. Methodology
PI is dependent on both the enthalpy difference between the sea surface and atmosphere and the tempera-
ture difference between the sea surface and the TC outflow level (approximately the tropopause; Emanuel
et al., 2013) and is given by Bister and Emanuel (1998) as

V 2
max =

Ck

CD

Ts − To

To
(h∗

o − h∗), (1)

where Ck and CD are the surface enthalpy and momentum exchange coefficients, Ts is the SST, To is the
outflow temperature, h∗

o is the saturation moist static energy of the sea surface, and h∗ is the saturation
moist static energy of the free troposphere (which is assumed to be the same as the boundary layer moist
static energy in a deep convecting atmosphere). The thermodynamic efficiency

(
Ts−To

To

)
is more sensitive to

changes in To than changes in SST, so SSTs primarily influence PI through the air-sea disequilibrium term(
h∗

o − h∗). It is thus not the absolute value of SST, but the difference between temperatures of the sea surface
and the free troposphere that contributes to PI variability (Emanuel et al., 2013).

PI is calculated from monthly reanalysis data following previous studies (e.g., Gilford et al., 2019; Strazzo
et al., 2015; Vecchi & Soden, 2007; Wing et al., 2015, 2007) using the BE02 (Bister & Emanuel, 2002) algo-
rithm. While PI may vary on submonthly time scales, using submonthly PI values rather than monthly
averages is not expected to affect correlations with actual TC intensity (Kossin, 2015). To is calculated as
the temperature at the level of neutral buoyancy for a saturated parcel of air, which has been reversibly
and adiabatically lifted from sea level pressure, and the Ck

CD
ratio is set to the constant value of 0.9, follow-

ing previous studies (Gilford et al., 2017; Wang et al., 2014; Wing et al., 2015). The BE02 algorithm is more
accurate for PI calculations than directly calculating and multiplying each term on the right-hand side of
Equation 1 because the BE02 algorithm accounts for water loading and the virtual temperature effect (Bister
& Emanuel, 2002). The calculated To and SSTs from each reanalysis are used to calculate the efficiency term.
PI, To, efficiency, and SSTs for each reanalysis are fit to a common 2.5◦ × 2.5◦ grid (Gilford et al., 2017). Given
Ck
CD

, directly calculated efficiency, and BE02 algorithm-derived PI, the disequilibrium term is calculated as a
residual after taking the natural logarithm of Equation 1:

2log
(

Vmax
)
= log

(
Ck

CD

)
+ log

(
Ts − To

To

)
+ log

(
h∗

o − h∗)
. (2)

Although Equation 2 is an approximation to the BE02 algorithm, Wing et al. (2015) showed that it is still
reasonable to use it to solve for the logarithm of the disequilibrium term as a residual. To test the sensitivity
of the results to this approach, the disequilibrium term is also directly calculated using MERRA-2 data with
h∗ calculated at 500 hPa, representing the midtroposphere. The results are similar when calculating h∗ at
600 hPa (Text S4; Tables S2–S13). The values of PI, efficiency, and the logarithm of disequilibrium at the
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Figure 1. Scatter plots of AI versus PI for each basin for the set of tropical storms and hurricanes including AI > PI
from ERA-Interim for 1980–2016. These correlations are representative of the other reanalyses and sets. R is the
correlation coefficient, and p is the p value. The black line is a linear best fit line. The data have been normalized and
detrended.

location and month in which the TC first reached its LMI (“AI”) are extracted for each storm in a given
basin from 1980–2016; this PI is referred to as “along-track PI,” as opposed to the basin-averaged PI that
is considered in many other studies. Next, these variables are averaged over all storms in each year so that
there is one average AI and PI value per year.

In order to separate the influence of SST and To on variability in the efficiency term, two additional versions
of the efficiency term are computed—one that uses monthly climatological values of SST but varying To and
one that uses monthly climatological values of To but varying SST. For example, the logarithm of efficiency
with climatological To is given by

log(effclimo To
) = log

(
Ts(t) − ⟨To⟩⟨To⟩

)
. (3)

In Equation 3, Ts(t) is the SST of the specific month of AI while ⟨To⟩ is the monthly climatological value of
To averaged over 1980–2016. Equation 3 represents the SST contribution to efficiency variability. Similarly,

log(effclimo Ts
) = log

(⟨Ts⟩ − To(t)
To(t)

)
(4)

represents the To contribution to efficiency variability.

We consider three sets of storms in our analyses. The first set contains tropical storms and hurricanes and
includes gridpoints where AI is greater than PI, which may occur due to, for instance, limitations of PI
theory (e.g., Bryan & Rotunno, 2009). Including this set also allows us to directly compare results to Wing
et al. (2007). The second set includes only TCs reaching hurricane strength during their lifetime and includes
gridpoints where AI > PI. The third set consists of tropical storms and hurricanes but excludes gridpoints
where AI > PI.
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Table 1
AI Versus PI Correlation Statistics

Set R p value
Western North Pacific
MERRA-2 HadISST
Hurricanes including AI > PI 0.57 <0.01
TS/hurricanes including AI > PI 0.44 0.01
TS/hurricanes excluding AI >PI 0.53 <0.01
MERRA-2
Hurricanes including AI > PI 0.73 <0.01
TS/hurricanes including AI > PI 0.57 <0.01
TS/hurricanes excluding AI >PI 0.37 0.03
ERA-Interim
Hurricanes including AI > PI 0.64 <0.01
TS/hurricanes including AI > PI 0.54 <0.01
TS/hurricanes excluding AI >PI 0.62 <0.01
North Atlantic
MERRA-2 HadISST
Hurricanes including AI > PI 0.17 0.30
TS/hurricanes including AI > PI 0.20 0.23
TS/hurricanes excluding AI >PI 0.22 0.18
MERRA-2
Hurricanes including AI > PI 0.19 0.26
TS/hurricanes including AI > PI −0.04 0.80
TS/hurricanes excluding AI >PI 0.18 0.29
ERA-Interim
Hurricanes including AI > PI 0.11 0.53
TS/hurricanes including AI > PI 0.04 0.81
TS/hurricanes excluding AI >PI 0.24 0.16

Note. Results for the Western North Pacific and North Atlantic, for
1980–2016. The correlation coefficients (R) and p values between AI and PI
are displayed. Values are in bold if significant at the 95% confidence level.

To examine correlations between AI and PI, yearly averaged AI and PI are normalized by their respective
climatological average over all years according to

PInorm =
⟨PI⟩

𝑦earl𝑦 − ⟨PI⟩climo⟨PI⟩climo
(5)

and likewise for AI. The time series of normalized AI and PI are then detrended by subtracting the linear best
fit line. The correlation coefficient between time series of normalized and detrended AI and PI is considered
to be statistically significant at the 95% confidence level using the student's t test.

4. Relationship Between AI and PI Variability
4.1. Correlation Results

Figure 1 summarizes the results from ERA-Interim over 1980–2016 for each basin, for the set of tropical
storms and hurricanes including grid points where AI > PI. In each basin, AI variability tends to be larger
than PI variability, but the Western North Pacific is the only basin with a statistically significant correlation
between AI and PI (Figure 1). This conclusion is robust across other reanalyses and sets of storms; for all
other basins, nearly all reanalysis/set combinations have insignificant correlations (Text S1; Figures S1–S6).

The correlations in the Western North Pacific range from R = 0.37 to R = 0.73, depending on the data set
and set, all of which are significant at the 95% confidence level (Table 1; Figure S5). These results reflect
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a strong correspondence between the variability of AI and PI and are consistent with Wing et al. (2007),
though the correlations found here are generally higher.

The North Indian ocean basin has a single statistically significant correlation of R = −0.34, for the sets
of tropical storms and hurricanes including AI > PI from MERRA-2 HadISST (Figure S2). This and other
(nonsignificant) negative correlations in the North Indian (Figure 1e) are most likely related to the low
number of TCs that occur in this basin and the modulation of TC activity by other factors like wind shear
associated with the monsoon circulation (Gilford et al., 2019). The South Pacific and South Indian have
no significant correlations between AI and PI in any of the sets or data sets considered (Figures 1b, 1c, S3,
and S4). In the Eastern North Pacific, the set of hurricanes including AI > PI has statistically significant
correlations between AI and PI in MERRA-2 and MERRA-2 HadISST (R = 0.47, R = 0.46), and a nearly
significant correlation (R = 0.33, p = 0.05) in ERA-Interim (Figures 1f and S6).

As shown in Table 1, no statistically significant correlations between AI and PI are found for the North
Atlantic (see also Figures 1a and S1). This is in contrast to Wing et al. (2007), who found statistically sig-
nificant correlations in the North Atlantic. The reasons for this inconsistency are investigated in the next
section.
4.2. Sensitivity to Data Set and Time Period

The analysis in this study differs from that of Wing et al. (2007) in both the choice of data set and time period;
Wing et al. (2007) considered the 56-year time period of 1950–2005 and the NCEP/NCAR reanalysis while
we consider the 37-year time period of 1980–2016 and MERRA-2, MERRA-2 HadISST, and ERA-Interim
reanalyses. We repeat our analysis of the North Atlantic from 1980–2016 using NCEP/NCAR reanalysis
to calculate PI. This also yields insignificant results (Text S2; Figure S7), indicating that the inconsistency
between our results and Wing et al. (2007) does not arise from the choice of data set. To probe the sensitiv-
ity of correlations between AI and PI to the time period considered, we subset the NCEP/NCAR reanalysis
data from 1950–2016 into all possible combinations of periods of 10-, 20-, 30-, 34-, 37-, 40-, 45-, 56-, 60-, and
67-year lengths (Figures 2 and S8; Text S3). For years before 1979, 1.9 m/s is subtracted from all PI values to
account for discontinuities due to the introduction of satellite data (Emanuel, 2007; Wing et al., 2007). Quali-
tatively similar results are obtained when using the ERA-20C reanalysis from 1950–2010 (Figure S9); results
from NCEP/NCAR are shown here for comparison to Wing et al. (2007). The analysis considering the set of
hurricanes including AI > PI is shown in Figure 2, in which the correlation coefficient and corresponding
p value are plotted for each time period considered.

As the number of years in the time period increases, both the average correlation and fraction of correlations
that are statistically significant increase. There are a wide range of correlations in the 10- and 20-year time
periods, but none are statistically significant, reflecting short, noisy time series. Ten percent of the 30- and
34-year time periods have significant correlations, while 20% of the 37-year time periods do (not including
the 1980–2016 period considered here, which has the lowest correlation of the 37-year time periods). For
the 40-, 45-, and 50-year time periods, 30%, 50%, and 80% have significant correlations, respectively. All 56-,
60-, and 67-year time periods yield statistically significant correlations between AI and PI, including the
1950–2005 period considered by Wing et al. (2007).

It is clear that the discrepancy between our results for the North Atlantic and those of Wing et al. (2007)
arises due to the different time period used. For a short time period, a larger correlation than the typical
R ∼ 0.2–0.4 observed would be needed for it to be statistically significant. The correlation between AI and PI
is not only influenced by the number of years in the sample size, but also the specific years included, with
a larger spread of possible correlations for shorter time series. There is no obvious pattern to how the value
of the correlation depends on the central year of the time period considered, except for a slight tendency for
correlations covering years later in the record to be lower (Figure S10). The same sensitivity tests are also
performed for the Western North Pacific, where there is a significant correlation in most time periods tested
(Text S3; Figures S8 and S9). We speculate on the reason for the particular sensitivity of the AI versus PI
relationship to the time period examined in the North Atlantic in the conclusions.

5. Factors Contributing to PI and AI Interannual Variability
5.1. Role of Efficiency in PI Variability

Next, we investigate the contributions of thermodynamic efficiency and air-sea disequilibrium to PI vari-
ability. This follows from Wing et al. (2015), who found that 20–71% of the interannual variance in
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Figure 2. Correlation coefficients between AI and PI (R, on the left y axis and blue circles) and p values (on the right y
axis and red asterisks) for all combinations of years in a time period of a given length, for the set of hurricanes
including AI > PI from NCEP/NCAR in the North Atlantic. The correlation coefficients and p values for each time
period length are offset from each other for visual clarity. The red line indicates a p value of 0.05 (statistical significance
at the 95% confidence level). The blue line indicates the correlation coefficient that would be required to have a
statistically significant correlation given that number of years. The filled blue circles (correlation coefficients) above
this line are the cases that are statistically significant. The fraction of cases that are significant is indicated by the text
above the x-axis label for each time period length. The cyan diamonds indicate the average correlation coefficient for
each length of time period. The time periods considered in this study (1980–2016) and in Wing et al. (2007)
(1950–2005) are labeled in black.

basin-averaged PI was explained by variability in efficiency, but here we examine PI sampled along actual TC
tracks. High and significant correlations (most at the 99% confidence level) are observed between detrended
time series of efficiency and PI for all cases (shown in Table 2 for the set of hurricanes including AI > PI
from MERRA-2; see Tables S2, S4, S6, S8, S10, and S12 for others). To some extent, high correlations were
expected since PI directly depends on efficiency (Equation 1), but since PI also depends on other factors,
these correlations are still notable. The highest correlation between efficiency and PI is for the set of hurri-
canes including AI > PI from MERRA-2 HadISST in the North Indian, which has a correlation coefficient of
R = 0.98 (Table S4). When considering all sets and data sets, the North Atlantic has the highest correlations
between efficiency and PI of any basin, consistent with Wing et al. (2015), who found larger contributions
of efficiency to PI trends in that basin (Table S2).

The differences between the correlations with PI of efficiency calculated using climatological SST and
efficiency calculated using climatological To are not statistically significant at the 95% level (based on a
two-sided Z test), with the exception of the set of hurricanes including AI > PI in MERRA-2 in the North
Indian. In this case, efficiency using climatological SST is more strongly correlated with PI (Table 2). Other-
wise, both To and SST contribute to efficiency-driven PI variability. While not statistically significant, To is
generally a greater factor in the North Atlantic, Western North Pacific, and Eastern North Pacific (Tables S2,
S10, and S12), and SST is generally a greater factor in the South Indian and South Pacific (Tables S6
and S8). Comparing the reanalyses, To tends to be a greater contributor to efficiency-driven PI variability
in MERRA-2 (Table 2) while the contribution from SST plays a bigger role in ERA-Interim and MERRA-2
HadISST (Text S4; Tables S2, S4, S6, S8, S10, and S12).
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Table 2
Factors Contributing to PI and AI Variability

Term versus PI R R2 p value
North Atlantic

Direct disequilibrium 0.62 0.38 <0.01
Residual disequilibrium 0.69 0.48 <0.01
Efficiency 0.97 0.94 <0.01
Efficiency climo To 0.95 0.90 <0.01
Efficiency climo Ts 0.97 0.94 <0.01

North Indian
Direct disequilibrium 0.37 0.14 0.06
Residual disequilibrium 0.99 0.98 <0.01
Efficiency 0.98 0.96 <0.01
Efficiency climo To 0.94 0.88 <0.01
Efficiency climo Ts 0.98 0.96 <0.01

South Indian
Direct disequilibrium 0.77 0.59 <0.01
Residual disequilibrium 0.96 0.92 <0.01
Efficiency 0.63 0.40 <0.01
Efficiency climo To 0.76 0.58 <0.01
Efficiency climo Ts 0.62 0.38 <0.01

South Pacific
Direct disequilibrium 0.72 0.52 <0.01
Residual disequilibrium 0.96 0.92 <0.01
Efficiency 0.78 0.61 <0.01
Efficiency climo To 0.82 0.67 <0.01
Efficiency climo Ts 0.76 0.58 <0.01

Western North Pacific
Direct disequilibrium 0.75 0.56 <0.01
Residual disequilibrium 0.93 0.86 <0.01
Efficiency 0.86 0.74 <0.01
Efficiency climo To 0.68 0.46 <0.01
Efficiency climo Ts 0.85 0.72 <0.01

Eastern North Pacific
Direct disequilibrium 0.79 0.62 <0.01
Residual disequilibrium 0.99 0.98 <0.01
Efficiency 0.86 0.74 <0.01
Efficiency climo To 0.67 0.45 <0.01
Efficiency climo Ts 0.83 0.69 <0.01

(Continued)

Across all basins, reanalyses, and sets of TCs, the variance in efficiency explains 10–96% of interannual vari-
ability in along-track PI, To-driven efficiency variations explain 7–96%, and SST-driven efficiency variations
explain 14–90%. The correlations between efficiency and PI found here for along-track PI are in general
larger than those found for basin-average PI in Wing et al. (2015). This indicates that the variability in PI and
its constituents are different in the locations sampled by TCs at their LMI than variability averaged over the
regions of peak TC activity, but an explanation for this requires investigating track variability in more detail.

5.2. Role of Disequilibrium in PI Variability

Extremely high correlations between detrended disequilibrium (computed as a residual) and PI are found
for all cases, all significant at the 99% confidence level. There are numerous instances of R = 0.99, most
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Table 2 (continued)

Term versus AI R R2 p value
Western North Pacific

Direct disequilibrium 0.47 0.22 <0.01
Residual disequilibrium 0.68 0.46 <0.01
Efficiency 0.65 0.42 0.03
Efficiency climo To 0.68 0.46 0.01
Efficiency climo Ts 0.66 0.44 0.03

Eastern North Pacific
Direct disequilibrium 0.15 0.02 0.37
Residual disequilibrium 0.41 0.17 0.01
Efficiency 0.54 0.29 0.01
Efficiency climo To 0.39 0.15 0.02
Efficiency climo Ts 0.53 0.28 0.01

Note. Results are shown for the case of hurricanes including AI > PI from
MERRA-2 for each basin that has statistically significant correlations. Values
are in bold if significant at 95%, and terms with the largest R2 for each basin
are italicized. Direct disequilibrium uses 500 hPa to calculate h∗.

consistently in the set with hurricanes including AI > PI in the East Pacific and South Pacific (see Table 2 for
MERRA-2; also Tables S8 and S12). High correlations were expected because disequilibrium is calculated as
a residual from Equation 2, which directly connects disequilibrium to PI. Statistically significant, but lower,
correlations are also found when disequilibrium is calculated directly (using either 500 or 600 hPa for the
h∗ calculation) using MERRA-2 in all basins except the North Indian.

When calculated as a residual, disequilibrium is more strongly correlated with PI than efficiency is in all
of the cases with a statistically significant difference in correlations, which represent 83% of the total cases
(across all basins and reanalyses). However, efficiency is more strongly correlated with PI than directly cal-
culated disequilibrium is in all but one of the cases for which there is a statistically significant difference,
which represent half of the total cases. Therefore, it is difficult to come to a robust conclusion on the relative
roles of SST and To in PI variability, as (statistically) both contribute and the dominant factor depends on
how disequilibrium is calculated. Note that Wing et al. (2015) and Gilford et al. (2017) found that SST was
the main factor in trends and the seasonal cycle of PI in most basins.

5.3. Role of Efficiency and Disequilibrium in AI Variability

Overall, it is expected that if there is a significant correlation between PI and AI (cf. section 4), then at least
one of the components of PI should also have a significant correlation with AI. Indeed, in the Western North
Pacific, disequilibrium and efficiency are both correlated with AI variability (shown in Table 2 for the set of
hurricanes including AI > PI from MERRA-2; see Table S11 for others). On the other hand, there are several
cases that do not have a statistically significant AI versus PI correlation yet contain a statistically significant
correlation between AI and efficiency and/or disequilibrium. For example, for the set of hurricanes includ-
ing AI > PI in the East Pacific, there is a significant correlation between efficiency and AI in all three data
sets (Tables 2 and S13). This indicates that a lack of significant correlation between AI and PI could result
from inconsistent behavior in the factors contributing to PI variability.

6. Conclusions
Unlike many other studies that have focused on basin-averaged PI trends (Emanuel et al., 2013; Gilford
et al., 2017; Wing et al., 2015) or the influence of SSTs on TC intensity (Holland & Bruyere, 2014; Knutson
et al., 2010; Strazzo et al., 2015; Walsh et al., 2016), this study analyzed the relationship between interannual
variability in along-track PI and AI as well as the relative contributions of thermodynamic efficiency and
air-sea disequilibrium to that variability.

Based on previous empirical results linking AI variability to PI variability (Emanuel, 2000; Wing et al., 2007),
a positive, statistically significant correlation between AI and PI was expected. However, the Western
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North Pacific is the only basin to consistently yield such correlations over the time period from 1980–2016,
across the multiple reanalyses and sets of TCs considered. This result contrasts with the findings of Wing
et al. (2007) in which both the Western North Pacific and North Atlantic had significant correlations. This
lack of agreement is due to the different time periods examined. Consistent with expectations, PI theory
holds best in the Western North Pacific, because of its large number of intense TCs and strong thermo-
dynamic modulation of TC activity. A variety of complicating factors in the other basins may prevent a
statistically significant relationship between AI and PI from emerging: The North Atlantic has substantial
multidecadal variability, which may contribute to the sensitivity of the results to the time period (Goldenberg
et al., 2001; Vimont & Kossin, 2007); TC activity in the North Indian is strongly modulated by other factors
like the monsoon circulation (Camargo et al., 2010; Evan & Camargo, 2011; Gray, 1968); the historical TC
data are known to be especially flawed in the Southern Hemisphere even as recently as 1985 (Ramsay, 2017;
Schreck et al., 2014); and the TC activity in the Eastern North Pacific is densely contained in a small region
(Gray, 1968).

It is worth further considering why the results are so sensitive to both the length of the time period and the
specific years. In addition to longer records having greater sample sizes (making it easier to achieve statistical
significance), a long time series with its linear trend removed contains both interannual and interdecadal to
multidecadal variability. A preliminary analysis of the correlation between AI and PI in the North Atlantic
reveals that the correlation is much higher when a running average over >5 years is applied to the time
series (Text S3; Figure S11; Table S1). This indicates that AI variability is more strongly controlled by PI
variability on longer time scales. Thus, the AI versus PI relationship may only emerge when lower-frequency
variability is present in the time series, as it was in the time series considered by Wing et al. (2007). In
addition, several anomalous storms in an individual year may bias the AI versus PI relationship, which
could explain why some time periods of a given length have a significant correlation and others do not.
North Atlantic correlations may be more susceptible to this than in the western North Pacific because there
are far fewer storms in the Atlantic (Gilford et al., 2019). While the number of TCs in a given year does not
directly affect the p value for correlations between annual mean time series, it affects how representative the
annual mean AI and PI values are. Through the principle of error propagation, uncertainty in the annual
mean (which would be larger in the years with fewer TCs) leads to uncertainty in the value of the correlation
coefficient, which in turn affects the p value and therefore statistical significance of the correlation. Future
work could investigate these possible reasons for the lack of correlation between AI and PI on short time
scales in more detail.

Both efficiency and disequilibrium contribute to variations in along-track PI. Variability in the various ver-
sions of the efficiency term explains 7–96% of along-track PI variability, while variability in disequilibrium
explains 48–98%. This large spread in variance explained illustrates how basin and data set can affect the
interpretation of which factor is most important for PI variability. Overall, disequilibrium calculated as a
residual has the highest correlations with both PI and AI, emphasizing the role of SSTs in TC intensity
variability, but outflow temperature also plays a role. The lack of correlations between AI and PI in many
basins suggest that factors not considered in PI theory, such as vertical wind shear, the entrainment of dry
air, and ocean-atmosphere interaction, should also be considered in the year-to-year variability of actual TC
intensity.

Data Availability Statement
The IBTrACS data were obtained from NOAA's National Climatic Data Center available at https://doi.
org/10.7289/V5NK3BZP (Knapp, Applequist, et al., 2010). The MERRA-2 data were obtained from NASA's
Global Modeling and Assimilation Office (GMAO) at https://doi.org/10.5067/A7S6XP56VZWS (Global
Modeling and Assimilation Office, 2015). The ERA-Interim data were obtained from ECWMF at https://
apps.ecmwf.int/datasets/data/interim-full-daily. The NCEP/NCAR and ERA-20C data are available from
the Research Data Archive at the National Center for Atmospheric Research, available at https://rda.ucar.
edu/datasets/ds090.0/ (NCEP/NWS/NOAA/U.S. Department of Commerce, 1994) and https://doi.org/10.
5065/D6VQ30QG (ECMWF, 2014), respectively. The HadISST1 data were obtained from the UK Met Office
Hadley Centre for Climate Prediction and Research at http://www.metoffice.gov.uk/hadobs/hadisst/data/
download.html. The code to calculate potential intensity is available at ftp://texmex.mit.edu/pub/emanuel/
TCMAX/pcmin.m, courtesy of Kerry Emanuel. The along-track potential intensity data is available at
https://doi.org/10.5281/zenodo.3905132 (Gilford et al., 2020).
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